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Recent studies of cortical neurons driven by fluctuating currents revealed cutoff frequencies for action

potential encoding of several hundred Hz. Theoretical studies of biophysical neuron models have

predicted a much lower cutoff frequency of the order of average firing rate or the inverse membrane

time constant. The biophysical origin of the observed high cutoff frequencies is thus not well understood.

Here we introduce a neuron model with dynamical action potential generation, in which the linear

response can be analytically calculated for uncorrelated synaptic noise. We find that the cutoff frequencies

increase to very large values when the time scale of action potential initiation becomes short.
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In the cerebral cortex of the brain information is encoded
in the action potential (AP) firing rates of a large ensemble
of nerve cells. Recent experiments have observed a sur-
prisingly high cutoff frequency for the action potential
encoding of cortical neurons driven by fluctuating input
currents [1–4]. In a seminal paper Köndgen et al. showed
that the transmission function of layer 5 pyramidal neurons
for a noisy sinusoidal signal does not decay until about
200 Hz [1]. Later experiments confirmed such high cutoff
frequencies for signals coded by both the mean current and
noise strength [2] and in other types of cortical neurons
[3,4]. For an early observation of fast response see [5].
Previous theoretical studies of biophysical neuron models,
however, predicted cutoff frequencies of the order of the
average firing rate or the inverse membrane time constant
(below 20 Hz), much lower than the experimentally ob-
served values [6–8]. Thus, the origin of the high cutoff
frequencies found in cortical neurons is currently not well
understood. Numerical investigation of neuron models
with dynamical AP generation, like the exponential
integrate-and-fire (EIF) model or the generalized theta
neurons, suggested that details of AP generation can
influence the dynamical response of neuronal populations
[6–9]. What is missing, however, is a transparent under-
standing of how and when the population cutoff frequency
can dissociate from the basic single neuron time scale set
by the mean firing rate and the time constant of membrane
potential relaxation.

In this work we present an analytically solvable model
which explicitly describes the dynamical AP initiation
process. A neuron initiates an AP if the membrane poten-
tial passes an unstable fixed point, the voltage threshold.
In the leaky integrate-and-fire (LIF) model, for which the
linear response is known analytically, the unstable fixed
point coincides with the absorbing boundary and a spike
is triggered immediately when the membrane potential
reaches this threshold [10,11]. As a consequence, boundary
induced artifacts dominate the response for high signal

frequencies in the LIF model [6–8]. One important
advantage of our new model is that such boundary induced
artifacts can be separated out mathematically, isolating the
physically meaningful part of the response function. We
first present the linear response for both encoding para-
digms with white noise. We find that for a wide range of
parameter settings the cutoff frequency is directly propor-
tional to the AP onset rapidness for a noise coded signal. It
therefore dissociates from the membrane time constant and
can become arbitrarily large. For the mean current coded
signal, however, the cutoff frequency is confined by the
membrane time constant in the white noise case. We show
by numerical simulation that this confinement can be bro-
ken when a finite correlation time in the synaptic noise
is taken into account and high cutoff frequencies can be
obtained for a large AP onset rapidness. Interestingly,
experiments showed that the AP onset rapidness of cortical
neurons is very large both in vitro and in vivo [12,13],
which may thus explain the occurrence of high cutoff
frequencies. Our results provide a relationship between
the spike onset dynamics and the population cutoff
frequency that can be directly tested in physiological
experiments.
The simplest voltage dynamics that exhibits both a

stable fixed point (the resting potential) and an unstable
fixed point (the voltage threshold) has a piecewise linear
membrane current, composed of a leak current for low
potential and a linear spike generating current for high
potential [Fig. 1(a)]. The model is defined by the following
Langevin equation

�m _v¼�vþ�ðv�v0Þðrþ 1Þðv�v0Þþ�þ��ðtÞ; (1)

where v is the membrane potential relative to the resting
potential, �m is the membrane time constant, �ðvÞ is
the Heaviside step function, r is the AP onset rapidness
which sets an effective time constant �m=r for the AP
initiation process. The larger is r, the faster is the
spike onset [Fig. 1(b)]. In biophysical models, the onset
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rapidness will be set largely by intrinsic properties of the
voltage dependent sodium channels, e.g., the gating charge
and the slope of the activation curve [12]. � is the mean
input current and � is the amplitude of synaptic noise. �ðtÞ
is a Gaussian white noise satisfying h�ðtÞi ¼ 0 and
h�ðtÞ�ðt0Þi ¼ �m�ðt� t0Þ. The crossing point v0 of the
two pieces sets the rheobase current, which we use as the
unit of voltage, v0 ¼ 1. The threshold potential is vt ¼
ð1þ 1=rÞv0. When the membrane potential reaches vb, the
truncation point of the AP upstroke, it is reset to a voltage
vr and stays there for an absolute refractory period �r.
For convenience we take �m as the unit of time in analytical
calculation.

The Fokker-Plank equation corresponding to Eq. (1) has
the following form

@tP1 þ @v

�
�vþ�� 1

2
�2@v

�
P1 ¼ 0;

@tP2 þ @v

�
rðv� vtÞ þ�� 1

2
�2@v

�
P2 ¼ 0;

(2)

where P1ðv; tÞ and P2ðv; tÞ are the probability densities of
membrane potential v for �1< v � 1 and 1< v � vb,
respectively. The stationary firing rate can be found
easily when the boundary conditions are specified. From
the reset assumption, we impose an absorbing boundary at
vb and, as a result the probability density is zero there,
P2ðvb; tÞ ¼ 0. The firing rate is given by the probability
current at vb, �ðtÞ ¼ � 1

2�
2@vP2ðvb; tÞ. At the reset

voltage vr, the probability density is continuous, while its
first derivative has a discontinuity from the reset condition:
@vP1ðvþ

r ; tÞ � @vP1ðv�
r ; tÞ ¼ @vP2ðvb; t� �rÞ. In addi-

tion, the density and its first derivative should be continu-
ous at v ¼ 1. When � and � are constants, the system
is homogeneous and the stationary solution of Eq. (2),

denoted as P01ðvÞ and P02ðvÞ, respectively, can be found.
The stationary firing rate �0 is then obtained from the
normalization condition of the density [14].
The stationary firing rate �0 of the model Eq. (1) reduces

to that for the LIF model for r ! 1. Figures 1(c) and 1(d)
show the dependence of �0 on the mean input � and the
amplitude of noise �, respectively. The firing rate �0

increases monotonically with r, �, and � and is relatively
insensitive to r when r > 10. For the dynamical response,
however, the r dependence is much more pronounced. The
instantaneous firing rate of an ensemble of model neurons
responds much faster for larger r to a step change in the
noise level [14].
Linear response.—When the input current to a neuron

is weakly modulated, linear response theory can be applied
to study the dynamical response properties of an ensemble
of neurons. To this end, we consider a sinusoidal signal
" cosð!tÞ, where " is small. When the signal is encoded
in themean current,� ! �þ " cosð!tÞ or in the noise am-
plitude, �!�þ"cosð!tÞ, the instantaneous firing rate
can be written as �ðtÞ¼�0þ"j�1cð!Þjcos½!t��cð!Þ�
or �ðtÞ ¼ �0 þ "�j�1nð!Þj cos½!t��nð!Þ�. Here �1ð!Þ
are the complex response functions. The absolute value
j�1ð!Þj are the transmission functions and the phase
angles �1ð!Þ ¼ argð�1ð!ÞÞ give the phase lags, which
completely characterize the linear response. Note that we
refer to both signal channels when the subscripts c and n
are omitted.
It is known that the absorbing boundary condition at vb

can induce severe artifacts in the dynamical response. The
potential vb marks a ‘‘point of no return,’’ which is not
present in a biophysical dynamical model of AP initiation.
As a consequence, the transmission function for a noise
coded signal in the LIF model, for instance, does not decay
at high signal frequencies [5,11]. Ideally one would thus
wish to separate the response function into a physiologi-

cally meaningful part �phy
1 ð!Þ and a part containing all

artifacts such that �phy
1 ð!Þ ¼ �1ð!Þ � �abs

1 ð!Þ. �phy
1 ð!Þ

must have the following properties: (i) �
phy
1 ð!Þ approaches

the static susceptibility when ! ! 0, specifically,

�phy
1c ð!Þ ! @�0

@� and �phy
1n ð!Þ ! 1

�
@�0

@� ; (ii) �phy
1 ð!Þ ! 0

when ! ! 1; (iii) no essential dependence on the
truncation point vb. The artifactual part from the
absorbing boundary should have the following pro-
perties: (i) negligible contribution for signal frequency
in the physiologically relevant range f � 1 kHz, e.g.

j�abs
1 ð!Þj � j�phy

1 ð!Þj, where f ¼ !=2�; (ii) strong de-

pendence on the truncation point vb. As we will show
next such an isolation of the physiologically meaningful
response is possible in the model Eq. (1).
In the model Eq. (1), the linear response can be obtained

analytically by expanding the probability density in Eq. (2)
to first order in " and using the Green’s function method.
We find that �1nð!Þ decomposes naturally into two parts,

�1ð!Þ ¼ �low
1 ð!Þ þ �high

1 ð!Þ, with
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FIG. 1 (color online). (a) Illustration of the model. (b) VðtÞ
trajectories for identical noise and three different values of r. (c)
and (d) show the dependence of stationary firing rate on mean
input current and noise strength in the noise driven regime.
(�m ¼ 10 ms, vr ¼ 0, vb ¼ 10, �r ¼ 0).
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�low
1c ð!Þ ¼ i!

ð1� i!Þð1þ i!=rÞ
ð1þ 1=rÞðc 1P01 �

ffiffiffiffi
D

p
�1P

0
01Þ � ð1þ i!=rÞ�1ðvrÞe�0þi!�r

c 1ðvrÞe�0þi!�r þ ðY1c
0
1 � Y0

1c 1Þe�1
;

�low
1n ð!Þ ¼ i!ði!� 1Þ

ð2� i!Þð2þ i!=rÞ
ð1þ 1=rÞð i!

ð1�i!Þ ffiffiffi
D

p �1P01 þ 2�1P
0
01Þ þ �0

D ð2þ i!=rÞ�ðvrÞe�0þi!�r

c 1ðvrÞe�0þi!�r þ ðY1c
0
1 � Y0

1c 1Þe�1
;

(3)

where D ¼ 1
2�

2, �0 ¼ ð1� vrÞð2�� 1� vrÞ=4D and
�1 ¼ ð1� vbÞ½2�� 1þ rðvb � vtÞ�=4D. c 1, �1, and
�1 are parabolic cylinder functions, and Y1, Y2 are a
combination of parabolic cylinder functions, whose defi-
nition together with the �

high
1 ð!Þ parts are given in the

supplement [14]. Any prime represents the derivative
with respect to v. Here and in the following, the functions
adopt their values at v ¼ 1 if not denoted explicitly.
Figure 2 illustrates the linear response with r ¼ 1 as an
example.

Removing boundary induced artifacts.—The decompo-
sition of �1ð!Þ into two additive components has exactly
the features required for the separation of artifacts. Using
asymptotic expansion of the parabolic cylinder functions

we find that for a finite signal frequency, �
high
1 can be

approximated by

�high
1c ð!Þ ’ �0

rðvb � vtÞ þ�

i!

rþ i!
;

�high
1n ð!Þ ’ � �0

½rðvb � vtÞ þ��2
i!ð1þ i!=rÞ
2þ i!=r

:

(4)

when vb � vt. So �high
1 ð!Þ are strongly dependent on vb

and approach zero when vb ! 1 for finite signal frequency.

When ! ! 0, �
high
1 ð!Þ are negligible compared with

�low
1 ð!Þ and are strongly suppressed when vb is large. That

�high
1n ð!Þ captures all artificial contributions imposed by

the absorbing boundary condition is finally confirmed from

the high frequency behavior, �
high
1c ð!Þ ! �0ffiffiffi

D
p 1ffiffiffi

!
p ei�=4 ¼

lim!!1�LIF
1c ð!Þ and �

high
1n ð!Þ ! �0

D ¼ lim!!1�LIF
1n ð!Þ,

since the high frequency behavior in the LIF model is
determined solely by the absorbing boundary. As a conse-

quence, neglecting �high
1n ð!Þ in the response function elimi-

nates any boundary induced instantaneous response
components. These results establish that �low

1 ð!Þ capture

the behavior of �1ð!Þ for low and intermediate frequencies
and decay to zero in the large frequency limit. When! ! 0,

�low
1n ð!Þ ! �1nð0Þ ¼ 1

�
@�0
@� , since �high

1n ð!Þ is negligible

there. �low
1 ð!Þ exhibits only a weak dependence on vb

through a frequency dependence phase lag �0 ¼ !
r �

log _vbþ�ffiffiffiffiffi
rD

p , characterizing the time lag to the truncation point

vb of the AP upstroke. Therefore, we have �low
1 ð!Þ¼

�phy
1 ð!Þ. The physiologically meaningful predictions of

the model can thus be revealed by examining �low
1 ð!Þ in

isolation.
Cutoff frequency and AP onset rapidness.—Figure 3

shows the behavior of �low
1 ð!Þ with increasing r and how

the cutoff frequency fc changes with r for different �0 [15].
We see that fc increases linearly with the onset rapidness r
for noise coded signals when the firing rate is not very low
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FIG. 2 (color online). The normalized function �1ð!Þ=�1ð0:1Þ
and phase lag for a mean coded signal and noise coded signal
with r ¼ 1, � ¼ 0, and �0 ¼ 5 Hz. Other parameters are the
same as in Fig. 1. Lines, theory; Symbols, simulation.
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FIG. 3 (color online). (a) and (c) The normalized transmission
function �low

1 ð!Þ=�1ð0:1Þ for different r with � ¼ 0 and �0 ¼
5 Hz. (b) and (d) The variation of cutoff frequency with r for
different firing rates: �0 ¼ 1, 5, 10, 20, 30, 40 Hz from lower
to upper curves. Other parameters are the same as in Fig. 1.
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(>1 Hz here); while for mean coded signals fc saturate for
large r. The increase of fc with firing rate �0 results from
the stochastic double resonance phenomenon: the trans-
mission function will develop a peak for some optimal
signal frequency before decaying when �0 is relatively
large [16].

Figure 3(d) suggests that the cutoff frequency for a noise
coded signal follows fc / r and dissociates from �m. This
is directly confirmed by the large frequency approximation
of �low

1n ð!Þ,

�low
1n ð!Þ / expð� �

4 !=rÞ
2þ i!=r

�
�P0

01 þ
i
ffiffiffiffiffiffiffiffiffiffiffi
i!=r

p
2

ffiffiffiffi
D

p ~P01

�
; (5)

where ~P01ðvÞ �
ffiffiffi
r

p
P01ðvÞ. Because ~P01ðv0Þ !

ffiffiffi
�
2

p �0ffiffiffi
D

p and

P0
01ðv0Þ ! � �0

D for r � 1, the decay of �low
1n ð!Þ depends

essentially only on !=r. This implies that the cutoff
frequency for a noise coded signal dissociates from
�m and becomes proportional to the onset rapidness r,
fc ¼ Ar, where A depends on �0 through the effect dis-
cussed above. This demonstrates that fast onset APs can
enhance the cutoff frequency and therefore the response
speed significantly. Note that a linear relationship fc / r
was previously conjectured by Naundorf et al. based on
dimensional analysis [17].

For a current coded signal, however, �low
1c ð!Þ /

1ffiffiffi
!

p expð� �
4 !=rÞ for large r. Therefore the linear response

is confined by the membrane time constant in the white
noise case, as seen also from Fig. 3(a). Real synaptic
inputs, however, have a finite correlation time and can be
approximated better as a colored noise. As shown in Fig. 4,
the confinement by the membrane time constant is broken
under such conditions and cutoff frequencies of several
hundred Hz can be reached for large r [14].

Our results identify AP onset rapidness as a critical
determinant of population cutoff frequency and reveal
how this cutoff frequency can dissociate from the basic
single neuron time constants set by the mean firing rate and
membrane time constant. The confinement of the mean

response for white noise constitutes an interesting predic-
tion of the model, which should be tested experimentally
by using a very short correlation time (� 1 ms) of the
synaptic noise. The origin of the large onset rapidness
seen in cortical neurons is a matter of ongoing debate
[17,18]. Its value can be modified in real neurons by
applying drugs like TTX or knockout of sodium channel
subtypes [12,19]. Measurements of dynamical response
for cortical neurons under such manipulations are thus
predicted to provide important insight into the mechanism
of fast population coding.
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