
Please cite this article in press as: Effertz et al., NompC TRP Channel Is Essential for Drosophila Sound Receptor Function, Current
Biology (2011), doi:10.1016/j.cub.2011.02.048
NompC TRP Channel Is Esse
Current Biology 21, 1–6, April 12, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.02.048
Report
ntial

for Drosophila Sound Receptor Function
Thomas Effertz,1 Robert Wiek,1 and Martin C. Göpfert1,*
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Summary

The idea that the NompC TRPN1 channel is the Drosophila

transducer for hearing has been challenged by remnant
sound-evoked nerve potentials in nompC nulls [1–5]. We

now report that NompC is essential for the function of
Drosophila sound receptors and that the remnant nerve

potentials of nompC mutants are contributed by gravity/
wind receptor cells. Ablating the sound receptors reduces

the amplitude and sensitivity of sound-evoked nerve
responses, and the same effects ensued from mutations in

nompC. Ablating the sound receptors also suffices to
abolish mechanical amplification, which arises from active

receptor motility [6, 7], is linked to transduction [8], and
also requires NompC [9]. Calcium imaging shows that the

remnant nerve potentials in nompC mutants are associated
with the activity of gravity/wind receptors and that the sound

receptors of the mutants fail to respond to sound. Hence,
Drosophila sound receptors require NompC for mechanical

signal detection and amplification, demonstrating the impor-
tance of this transient receptor potential channel for hearing

and reviving the idea that the fly’s auditory transducer might

be NompC.

Results and Discussion

Ever since NompC (also known as TRPN1) was implicated in
Drosophila touch sensation [10], it has been speculated that
this transient receptor potential (TRP) channel could be one
of the elusive transduction channels for hearing [2–5, 11]. First,
bearing a predicted pore region and an N-terminal ankyrin
spring, NompC seems structurally qualified for being a gating
spring-operated ion channel as implicated in auditory trans-
duction [12–17]. And second, though displaying a rather spotty
phylogenetic appearance [18], NompC is required for the func-
tion of certain Drosophila and nematode mechanoreceptors
[10, 19–21] and zebrafish hair cells [22]. NompC is also ex-
pressed in hair cells of frogs [23] and in mechanoreceptors
of theDrosophila ear [24–27], but even though NompC demon-
strably can serve as mechanotransduction channel [21], its
importance for auditory transduction and hearing remains
uncertain: in frog hair cells, NompC localizes to kinocilia [23]
that are dispensable for transduction [28]. And in the
Drosophila ear, loss of nompC function reduces the amplitude
of sound-evoked afferent nerve responses by only approxi-
mately one-half [1, 25].

A possible explanation for the mild latter effect has
emerged with the recent discovery that the antennal hearing
organ of Drosophila, Johnston’s organ (JO), houses sound
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and gravity/wind receptors: about half of the fly’s approxi-
mately 480 JO receptor cells preferentially respond to
dynamic antennal vibrations and serve sound detection,
whereas the other half preferentially respond to static
antennal deflections and mediate the detection of gravity
and wind [24, 25, 29]. Driving reporter genes via a nompC-
Gal4 promoter fusion construct only labeled the sound recep-
tors [24], suggesting that the sound-evoked nerve potentials
that persist in nompC mutants may be contributed by
nompC-independent JO gravity/wind receptor cells [5, 24,
30]. nompC-Gal4, however, reproduces endogenous nompC
expression only partially, and an antibody detected NompC
protein in virtually all receptors of JO [26]. To explore whether
the two JO receptor types nonetheless differ in their nompC
dependence, we here analyzed JO function in nompC
mutants and in flies with ablated sound or gravity/wind
receptor cells.
To selectively ablate JO sound or gravity/wind receptors, we

expressed UAS-ricin toxin A [31] in these cells using receptor
type-specific GAL4 drivers [24, 32, 33] in conjunction with the
ey-FLP/FRT system [34] to restrict toxin expression to GAL4-
expressing cells in the antenna and eye. To assess JO func-
tion, we exposed the flies to pure tones of different intensities
and simultaneously monitored the resulting mechanical input
and electrical output of JO. The mechanical input was
measured as sound-induced displacement of the antenna’s
arista [35, 36], whereas the electrical output was recorded in
the form of sound-evoked compound action potentials
(CAPs) from the receptor axons in the antennal nerve [37].
The frequency of the tones was adjusted to the mechanical
best frequency of the antenna, which was deduced from the
power spectrum of the antenna’s free fluctuations [9, 36]
(see Figure S1 available online). The intensity of the tones
was measured as the sound particle velocity at the position
of the fly [35, 36].
Residual Sound-Evoked Nerve Potentials in nompC

Mutants and Flies with Ablated Sound Receptor Cells
In accord with previous observations [1], we found that
remnant sound-evoked nerve potentials persist in nompC
nulls: varying the sound particle velocity between approxi-
mately 0.001 and 10 mm/s evoked CAPs in nompC2 and
nompC3 null mutants whose maximum amplitudes were w6
times smaller than those of the wild-type and controls (Fig-
ure 1A). Mutant flies carrying the weaker allele nompC4 dis-
played equally reduced CAP amplitudes, but the amplitudes
were normal when we expressed a UAS-nompC-L rescue
construct [20] in all JO receptors of nompC3 nulls (Figure 1A).
Reduced CAP amplitudes as observed in nompCmutants also
ensued from the targeted ablation of JO sound receptors (Fig-
ure 1A). When JO gravity/wind receptors were ablated,
however, CAP amplitudes remained normal, resembling those
of wild-type flies and controls (Figure 1A). Hence, sound-
evoked potentials in the fly’s antennal nerve are not only
contributed by JO sound receptors: if these receptors are
ablated, residual CAPs persist whose amplitudes resemble
those of nompC nulls.
RBIO 8735

http://dx.doi.org/10.1016/j.cub.2011.02.048
http://dx.doi.org/10.1016/j.cub.2011.02.048
mailto:mgoepfe@gwdg.de


A

C

B

Figure 1. Sound-Evoked Antennal Nerve Potentials

(A) Maximum compound action potential (CAP) amplitudes (means6 1 standard deviation [SD]) evoked by pure-tone stimulation at the antenna’s mechan-

ical best frequency with particle velocities between approximately 0.001 and 10 mm/s (Figure S2).

(B) Relative CAP amplitudes as functions of the tone-induced antennal displacement (lin-log). Above threshold, CAP amplitudes monotonously increase

with the antennal displacement and, upon reaching a maximum, redecrease (for corresponding simulations, see [8]). Relative voltage (V) amplitudes of

the CAPs were calculated as (V 2 Vmin)/(Vmax 2 Vmin). Solid lines represent Hill functions fitted to the increasing slope of the CAPs. The fit obtained for

wild-type and controls flies (dashed line) is repeated in each panel to facilitate comparisons.

(C) Dynamic ranges of the CAPs, deduced from the fits in (B) (means 6 1 SD, log scaling). Dynamic ranges are given as antennal displacements spanning

5%–95% of the maximum values of the fits in (B).

***p < 0.05 by two-tailed Mann-Whitney U test against control and wild-type strains (n = 4–20 receivers per strain).
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Flies with Ablated Sound Receptors and nompC Mutants
Lack Sensitive Hearing

Mutations in nompC, in addition to reducing sound-evoked
nerve potentials, impair sensitive hearing. This reduction in
auditory sensitivity became apparent when we plotted the
relative CAP amplitudes against the corresponding sound-
induced antennal displacement (Figure 1B). In wild-type and
control flies, antennal displacements equal to or greater than
w50 nm were sufficient to elicit CAPs, and the CAP amplitude
increased monotonously for displacements between approxi-
mately 50 and 600 nm (Figures 1B and 1C). In nompCmutants,
this dynamic range of the CAP response consistently shifted
up to antennal displacements between approximately 160
and 2000 nm, corresponding to an w3-fold sensitivity drop
(Figures 1B and 1C). This sensitivity drop, which was rescued
by expressing UAS-nompC-L in the JO receptors of nompC3

mutants, was also observed in flies with ablated JO sound
receptor cells (Figures 1B and 1C). When the gravity/wind
receptors were ablated, however, auditory sensitivity re-
mained unchanged (Figures 1B and 1C).

When we plotted the relative CAP amplitudes against the
sound particle velocity instead of the antennal displacement,
the sensitivity drop observed in nompC mutants and flies
with ablated sound receptors was even more pronounced,
assuming figures around 10 (Figure S2): in these flies, the
dynamic range of the CAPs spanned particle velocities
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between approximately 0.4 and 6 mm/s, whereas it spanned
between approximately 0.03 and 1 mm/s in flies with ablated
gravity/wind receptors, wild-type flies, and controls. Accord-
ingly, loss of nompC function and loss of sound receptor func-
tion reduce both the sensitivity of JO to antennal displace-
ments and, in addition, the mechanical sensitivity of the
antenna to sound.

Mechanical Amplification of Antennal Vibrations Requires
NompC and Sound Receptor Cells

To assess the mechanical sensitivity of the antenna, we deter-
mined how its displacement varies with sound intensity. In
wild-type and control flies, the antenna’s displacement nonli-
nearly increased with sound particle velocity (Figure 2A), dis-
playing a compressive nonlinearity that, arising from mechan-
ical activity of JO receptors [8, 9], enhanced the mechanical
sensitivity w8-fold when sound was faint (Figure 2B). Consis-
tent with previous observations [9], we found that this
nonlinear mechanical amplification was lost in nompC
mutants, rendering their antennae mechanically less sensitive
to acoustic stimuli so that louder sounds were required to
displace their antennae by a given distance, in addition to
the larger antennal displacements that were required to elicit
CAPs in their antennal nerves (Figures 1B and 1C; Figure S2).
We also found that this nonlinear amplification could be
rescued by expressing UAS-nompC-L in JO receptors and
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Figure 2. Nonlinear Amplification of Antennal Vibrations

(A) Tone-evoked antennal displacement as a function of the

particle velocity of the tones (log-log). Lines indicate linear

(peach) and nonlinear (red) regimes. Blue arrows indicate

nonlinear sensitivity gain, determined as the amplitude ratio

between the upper and lower linear regimes.

(B) Nonlinear sensitivity gain (means 6 1 SD, log scaling)

deduced from the data in (A). A gain of 1 indicates the

absence of amplification. ***p < 0.05 by two-tailed Mann-

Whitney U test against control and wild-type strains (n =

4–20 receivers per strain).
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that it specifically required JO sound receptor cells: ablating
only the sound receptors abolished mechanical amplification,
and the same effect was caused by mutations in nompC
(Figures 2A and 2B). In nompCmutants, this loss of amplifica-
tion was associated with alterations of the antenna’s tuning
and fluctuation power that were quantitatively mimicked in
flies with ablated sound receptor cells (Figure S1). If the
gravity/wind receptors were ablated, however, mechanical
amplification remained normal, with the antenna’s compres-
sive nonlinearity, its tuning, and its fluctuation power resem-
bling those of wild-type, nompC-L rescue, and control flies
(Figure 2A; Figure S1). Hence, nonlinear mechanical amplifica-
tion in the Drosophila ear requires both the NompC channel
and JO sound receptors but is independent of JO gravity/
wind receptor cells.

Sound Receptors, but Not Gravity/Wind Receptors,

Need NompC
Ablating JO sound receptors phenocopies the auditory
defects of nompC mutants (Figure 1; Figure 2), suggesting
that NompC is essential for the mechanosensory function of
these cells. To test this hypothesis, we monitored mechani-
cally evoked calcium signals in the somata of JO receptors
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of nompC3 null mutants and controls while simul-
taneously recording the displacement of the
antenna and the ensuing CAPs from the antennal
nerve. Calcium signals were measured through
the cuticle of the antenna using the genetically en-
coded ratiometric calcium sensor Cameleon2.1
(Cam2.1) [24, 38, 39]. To evoke calcium signals,
we sinusoidally actuated the antenna at its
mechanical best frequency with electrostatic
force (for the equivalence of electrostatic and
acoustic actuation, see [37]).
When we expressed Cam2.1 in either the sound

receptors alone or all JO receptors, antennal
vibrations evoked robust calcium signals in
controls (Figure 3A). The calcium signals of the
sound receptors were entirely abolished in
nompC3 mutants, but when we expressed
Cam2.1 in all of their JO receptors, small calcium
signals were detected that closely resembled
those of the gravity/wind receptors of controls
(Figure 3A). To assess the relation between JO
calcium signals and antennal nerve potentials,
we plotted their respective amplitudes against
the antennal displacement (Figures 3B and 3C).
The large calcium signals of the sound receptors
of controls superimposed with the relative ampli-
tudes of the simultaneously recorded CAPs and
the CAPs of flies with ablated gravity/wind
receptor cells (Figure 3B). The small calcium signals of the
gravity/wind receptors were shifted to larger antennal
displacements and superimposed with the CAPs of flies with
ablated sound receptor cells (Figure 3B). Calcium signals ob-
tained from all JO receptors of controls had intermediate
amplitudes (Figure 3B), identifying them as mixed signals
contributed by sound and gravity/wind receptor cells (Fig-
ure S3A). The residual CAPs of nompC3 mutants did not asso-
ciate with calcium signals in their sound receptors, yet they
superimposed with the small calcium signals obtained from
all JO receptors of the mutants and from JO gravity/wind
receptors of the controls (Figure 3C). Although unsuccessful
recombination prevented us from selectively expressing
Cam2.1 in the gravity/wind receptors of themutants, the above
findings show that calcium signals that can be ascribed to
these receptors are associated with the residual CAPs in
nompC nulls. Additional evidence that the calcium signals in
the mutants arise from gravity/wind receptors was obtained
when we inspected the time course of these signals (Fig-
ure 3D): in controls, the onset of the calcium signals of all JO
receptors followed two exponentials. The exponential with
the larger time constant well fitted the calcium signals of their
sound receptors. The exponential with the smaller time
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Figure 3. Mechanically Evoked Calcium Responses Obtained by Expressing Cameleon2.1 in JO Sound Receptors, JO Gravity/Wind Receptors,

and All JO Receptors

The following abbreviations are used: S, JO sound receptors; G/W, JO gravity/wind receptors; S+G/W, all JO receptors.

(A) Antennal vibrations (bottom), CAPs (middle), and calcium signals (top) evoked by weak (gray traces) and strong (black traces) sinusoidal stimulation at

the antenna’smechanical best frequency in nompC3mutants (nompC2) and controls (nompC+). Calcium signal amplitudes represent changes in theCam2.1

eYFP/eCFP fluorescence ratio, where R is the average ratio before the stimulus and DR is the deviation from R (means of ten repetitions).

(B) Left: calcium signal amplitudes as a function of antennal displacement in nompC+ flies. Calcium signal amplitudes were measured as asymptotic values

of exponential fits. For an explanation of the intermediate calcium signal amplitudes of all JO receptors, see Figure S3A. Gray symbols indicate relative

amplitudes [(V 2 Vmin)/(Vmax 2 V min)] of the simultaneously measured CAPs. Upper right: calcium signals of the sound receptors superimposed with the

CAPs (gray symbols) of flies with ablated gravity/wind receptor cells. Bottom right: calcium signals of the gravity/wind receptors superimposed with the

CAPs of flies with ablated sound receptor cells.

(C) Left: calcium signal amplitudes as a function of antennal displacement in nompC2 flies (color code as in B). Gray symbols indicate relative amplitudes

[(V 2 Vmin)/(Vmax 2 Vmin)] of the simultaneously measured CAPs. Right: relative calcium signal amplitudes of all JO receptors of the mutants superimposed

with those of JO gravity/wind receptors of controls and the normalized CAPs (gray symbols) of flies with ablated sound receptor cells.

(D) Exponentials fitted to the calcium signals (top) and corresponding time constants (bottom).

For (B)–(D), n = 4–20 receivers per strain.
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constant well fitted the calcium signals of their gravity/wind
receptors and also those of nompC3 nulls. Hence, instead of
being contributed by JO sound receptors, the residual CAPs
of nompC mutants are deemed to reflect the activity of JO
gravity/wind receptor cells.

Judged from the intracellular calcium signals, the responses
of JO gravity/wind receptors to sinusoidal forcing are indepen-
dent of NompC. Because these receptors preferentially
respond to static forcing [24, 29], we statically deflected the
flies’ antennae andmeasured the ensuing calcium signals (Fig-
ure S3B). In accord with previous observations [24, 29], JO
sound receptors hardly responded to antennal deflections,
and the calcium signals obtained from all of the JO receptors
of nompC3 mutants were indistinguishable from those of
controls (Figure S3B). Hence, whereas NompC is essential
for the mechanosensory function of JO sound receptors, the
mechanosensory function of JO gravity/wind receptors seems
independent of NompC. Because NompC is detectable in the
dendritic tips of virtually all JO receptors [26], other proteins
may compensate for the loss of NompC in JO gravity/wind
receptors. Possibly, both JO receptor types also use different
NompC isoforms, which could also explain why certain nompC
promoter fusion constructs are selectively expressed in JO
sound receptor cells [24]. The isoform NompC-L [20] rescues
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the auditory defects of nompC mutants and accordingly
seems crucial for JO sound receptor function. Determining
NompC isoform patterns in JO may help understanding why
gravity/wind receptors express, but apparently do not need,
this TRP.
Conclusions

We have shown that NompC is essential for the mechanosen-
sory function of Drosophila sound receptors, making this TRP
channel a strong candidate for the fly’s auditory mechano-
transducer. Precedence that NompC can serve as amechano-
transduction channel comes fromwork onC. elegans [21], and
the importance of NompC for Drosophila auditory transduc-
tion is supported by its requirement for nonlinear mechanical
amplification: in the Drosophila ear, the source of this amplifi-
cation has been traced down to mechanotransducers [8] that,
judged from the present study, reside in the sound receptors.
Loss of amplification in flies with ablated sound receptors and
in nompC mutants indicates that these auditory transducers
require NompC. Clearly, more work is needed to dissect the
specific roles of NompC in auditory transduction, and such
dissection now seems most worthwhile given the auditory
importance of this TRP.
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Experimental Procedures

Flies

The following GAL4 strains were used: JO15 [32] and JO2 (also known as

NP1046) [33] for targeting sound receptors, JO31 (also known as NP6250)

[33] for targeting gravity/wind receptors, and JO1 (also known as NP0761)

[33] for targeting sound and gravity/wind receptors. Other strains used

included UAS-cam2.1 [24, 38, 39] for calcium imaging; eyFLP [34] and

UFWTRA19 [31] for ricin-mediated cell ablation; UAS-nompC-L [20] for

ectopic NompC expression; the deficiency strain Df(2L)clh2; and the nompC

alleles nompC2, nompC3, and nompC4 [10]. Genotypes of the experimental

flies were nompC2 cn bw/Df(2L)clh2 or nompC2 cn bw (nompC2 mutants);

nompC2 cn bw/Cy cn (nompC2 controls); nompC3 cn bw/Df(2L)clh2 or

nompC3 cn bw (nompC3 mutants); nompC3 cn bw/Cy cn (nompC3

controls); nompC4 cnbw/Df(2L)clh2 or nompC4 cn bw (nompC4 mutants);

nompC3,UAS-NompC-L/nompC3;NP0761/+ (nompC rescue); NP1046;

eyFLP/+;JO15/UFWTRA19 (ablation of sound receptors); NP6250/+;eyFLP/

UFWTRA19 (ablation of gravity/wind receptors); UAS-cam2.1;JO15/TM6b

(cam2.1 expression in sound receptors); NP6250;UAS-cam2.1 (cam2.1

expression in gravity/wind receptors); UAS-cam2.1;NP0761/TM6b (cam2.1

expression in all JO receptors); nompC3;JO15/UAS-cam2.1 (cam2.1 expres-

sion in JO sound receptors in nompC3 background); and nompC3;NP0761/

UAS-cam2.1 (cam2.1 expression in all JO receptors in nompC3background).

Cell ablations were confirmed by coexpressing a UAS-GFP reporter as

described previously [24].

Antennal Vibrations and CAPs

Antennal vibrations were evoked acoustically or electrostatically via an

external electrode placed behind the tip of the antennal arista [8, 24, 37].

Sound particle velocities were accessed with an Emkay NR 3158 pres-

sure-gradient microphone as described previously [36]. Antennal displace-

ments were monitored at the tip of the antenna’s arista with a Polytec PSV-

400 laser Doppler vibrometer equipped with an OFV-700 closeup unit

(70 mm focal length) [36]. CAPs were recorded with an electrolytically

tapered tungsten electrode inserted between antenna and head, with the

indifferent electrode being placed in the thorax [37]. Signals were digitized

at a rate of 12.1 kHz and subjected to fast Fourier transforms (1 Hz frequency

resolution). Signal amplitudes were measured as Fourier amplitudes at the

frequency of stimulation. Only CAP amplitudes were measured at twice the

stimulus frequency because of their frequency doubling [37]. Data analysis

and statistical data evaluation were performed using PSV-VIB (Polytec),

Spike 2 (Cambridge Electronic Design), Excel 2004 (Microsoft), and Sigma-

Plot 10 (Systat Software).

Calcium Signals

Transcuticular imaging of intracellular calcium signals was performed as

described previously [39]. A Cameleon two-filter set (455 nm DCLP,

515 nm DCLP, 535/30 nm emission filter, 485/40 nm emission filter; Chroma

Technology) and a dual view beam splitter (Photometrics DV2) were used for

detecting the eYFP and eCFP images simultaneous with a charge-coupled

device camera (Photometrics Cascade II:512).

Supplemental Information

Supplemental Information includes three figures and can be found with this

article online at doi:10.1016/j.cub.2011.02.048.
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